Liposome Characterization, Applications and Regulatory landscape in US

  • Amit Kumar B.pharm
  • Madhu Gupta
  • Simran Braya

Abstract

Liposomes are lipid based drug carrier whose therapeutic performance depends on their structure. Liposomes offer several advantages over the conventional drug like target drug delivery, reduced toxicity, and extended pharmacokinetics. Characterization and Identification of critical attribute of liposomal formulation and suitable strategies for control during product development is important for quality of the liposomal drug product. This paper discusses the current status of the liposomal drug product and strategy used in regulating liposome product. Despite of lack of regulatory guidelines many liposome formulations get approved which shows the potential of liposome drug products.

Keywords: Liposomes, Phospholipid, Nanotechnology, Lamellarity, Liposomal Delivery, ANDA, FDA, CTD

Downloads

Download data is not yet available.

References

1. Bangham AD. Liposomes in Biological Systems. Chichester: John Wiley and Sons; 1980.
2. Deamer DW. From "banghasomes" to liposomes: a memoir of Alec Bangham; 1921-2010.
3. Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta. 2007 May; 1768(5):1121-7.
doi: 10.1016/j.bbamem.2007.01.019. Epub 2007 Feb 1. PMID: 17321495.
4. Mu L., Sprando R. L. Application of nanotechnology in cosmetics. Pharm. Res. 2010; 27: 1746−1749.
5. Betz G. Aeppli, A. Menshutina N. Leuenberger H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm. 2005; 296:44−54
6. Y. Barenholz. Doxil®—the first FDA-approved nano-drug: from an idea to a product, in: D. Peer (Ed.), Handbook of Harnessing Biomaterials in Nanomedicine: Preparation, Toxicity, and Applications. Singapore: Pan Stanford Publishing; 2012.p. 335-398
7. Amarnath S, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154:123-140
8. Berger N.; Sachse A.; Bender J.; Schubert R.; Brandl, M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 2001; 223:55-68.
9. Provder T. Challenges in particle size distribution measurement past, present and for the 21st century. Prog. Org. Coat. 1997; 32:143-153
10. .Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J. Colloid Sci. Biotechnol. 2012;1:147- 168.
11. Edwards K.A, Baeumner A.J. Analysis of liposomes. Talanta. 2006; 68:1432-1441.
12. Hunter R.J, Midmore B.R, Zhang H. Zeta Potential of Highly Charged Thin Double-Layer Systems. J. Colloid Interface Sci. 2001; 237:147-149.
13. Schlieper P, Medda P.K, Kaufmann R. Drug-induced zeta potential changes in liposomes studied by laser Doppler spectroscopy. Biochim. Biophys. Acta. 1981; 644:273-283.
14. Wang T, Deng Y, Geng Y, Gao Z, Zou J, Wang Z. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim. Biophys. Acta. 2006; 1758:222-231.
15. Gillet A, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G. Skin penetration behaviour of liposomes as a function of their composition. Eur. J. Pharm. Biopharm. 2011; 79:43-53.
16. Elsayed M.M, Abdallah O.Y, Naggar V.F, Khalafallah N.M. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int. J. Pharm. 2006; 322:60-66.
17. Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Delivery Rev. 1999; 40:75-87.
18. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends PharmacolSci. 2009; 30:592-599.
19. Dupont B. Overview of the lipid formulations of the amphotericin B. J AntimicrobChemother. 2002; 49:31-36.
20. Fendler JH, Romero A. 1977. Liposomes as drug carriers. Life Sci. 20:1109-1120.
21. Heneweer C, Gendy SE, Peñate-Medina O. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. TherDeliv. 2012; 3:645-656.
22. Soni V, Chandel S, Jain P, Asati S. Role of liposomal drug-delivery system in cosmetics. 2016; 93-120.
23. Mirafzali Z, Courtney S, Thompson K.T. Application of Liposomes in the Food Industry. 2014; 139-150.
24. Balazs DA, Godbey W. Liposomes for use in gene delivery. J Drug Deliv. 2011; 2011:326497. doi: 10.1155/2011/326497
25. Bawa R, Audette G.F; Reece B. Handbook of Clinical Nanomedicine: Law, Business, Regulation, Safety, and Risk, Pan Stamford Series on Nanomedicine Florida, USA: CRC Press; Taylor and Francis. Boca Raton. 2016; vol. 2.
26. Kelly B, 2010 Nanomedicines: regulatory challenges and risks ahead [Internet]. COV; 2010 Oct [cited 2021 Mar 05]. Available from: https://www.cov.com/-/media/files/corporate/publications/2010/10/nanomedicinesregulatory.pdf
27. Madoa M, Tabib J.K, Nicholls F, Linga W, Wilhelm C, Debargee O, Gazeauc F, and Clement O. Contrast Media Mol. Imaging; 2013.
28. Zhang X.Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad O.C. Adv. Drug Delivery Rev. 2012;64.
29. Manke A, Wang L, Rojanasakul Y. BioMed Res. Int. 2013; 942916.
30. Kermanizadeh A, Balharry D, Wallin H, Loft s, Møller P, Crit. Rev. Toxicol. 2015.
31. Mahapatra I, Clark J.R.A, Dobson P.J, Owen R, Lynch I, Lead J.R. Environ. Sci. Nano. 2018;5.
32. Sengar G, Tripathy P. Pharmaceutical regulatory agencies and organizations around the world: Scope and challenges in drug development [Internet]. Pharmatutor; 2021 [cited 2021 Mar 07]. Available from: https://www.pharmatutor.org/articles/pharmaceuticalregulatory-agencies-and-organizations-around-worldscope-challenges-in-drug-development.
33. US Food and Drug Administration (USFDA) [Internet]. US FDA; 2021 Feb 23 [cited 2021 Mar 03]. Available from: https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force
34. US Food and Drug Administration (USFDA) Nanotechnology—Over a Decade of Progress and Innovation; 2020 Jul.
35. US Food and Drug Administration (USFDA). Guidance for industry - Liposome drug products (Draft guidance 2191). August; 2002.
36. FDA, CDER. Liposome Drug Products Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labelling Documentation Guidance for Industry. April; 2015.
37. ICH Expert Working Group. ICH Guideline Q1A(R2) Stability Testing of New Drug Substances and Products. Int Conf Harmon. 2003.
38. US Food and Drug Administration (USFDA). Guidance for industry - Changes to an Approved NDA or ANDA. Guidance for Industry [Internet]. US FDA; 2004 Apr [cited 2021 Mar 02]. Available from:
39. Formal Meetings between FDA and ANDA Applicants of Complex Products under GDUFA. Guidance for Industry [Internet]. US FDA; 2020 Nov [cited 2021 Mar 04]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-anda-applicants-complex-products-under-gdufa-guidance-industry
40. Getting Liposome Drug Products Approved: They Are Non-biological Complex Drugs [Internet]. Camargo; 2018 May 16 [cited 2021 Mar 04]. Available from: https://camargopharma.com/resources/blog/getting-liposome-drug-products-approved-they-are-non-biological-complex-drugs.
41. Electronic Common Technical Document (eCTD) [Internet]. US FDA; 2021 Jun 07 [cited 2021 Jun 09]. Available from: https://www.fda.gov/drugs/electronic-regulatory-submission-and-review/electronic-common-technical-document-ectd.
Statistics
290 Views | 241 Downloads
How to Cite
Kumar, A., M. Gupta, and S. Braya. “Liposome Characterization, Applications and Regulatory Landscape in US”. International Journal of Drug Regulatory Affairs, Vol. 9, no. 2, June 2021, pp. 81-89, doi:10.22270/ijdra.v9i2.474.