• S Talegaonkar
  • A Ahmad
  • M Tariq
  • Z.I. Khan
  • L.M. Negi
  • A.M Khan
  • P. Negi


Oral route is one of the most accepted and convenient mode of drug administration, however low oral bioavailability of many drugs is a major concern which limits their oral administration. Optimum solubility and permeation of a drug across the intestinal epithelium is a prerequisite to reach the systematic circulation in the active form for effective action at the desired site. Physicochemical properties of the drug, physiological factors and pharmacokinetic factors are mainly responsible for their low solubility, low permeability and high metabolism which in turn into low oral bioavailability of the drug molecules. In this review, various factors which affect bioavailability of drugs and possible approaches to overcome this problem have been discussed.  The review identifies various areas for research that can be focused for improving oral bioavailability of therapeutic molecules for different classes of drugs, thus making the oral route of administration of the drugs more effective and useful.

Keywords: pKa, pH, bioavailability, Polymorph, NSAIDs, Liposomes, NEs.


Download data is not yet available.


1. Sant VP, Smith D, Leroux JC, “Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies,” Journal of Controlled Release, 2005, 104, 289–300.
2. Bromberg L, Polymeric micelles in oral chemotherapy, Journal of Controlled Release, 2008, 128, 99–112.
3. Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC, Polymeric micelles for oral drug delivery, European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 147–158.
4. Xu W, Ling P, Zhang T, Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs. Journal of Drug Delivery, http://dx.doi.org/10.1155/2013/340315
5. Lipinski CA, Drug-like properties and the causes of poor solubility and poor permeability, Journal of Pharmacological and Toxicological Methods, 2000, 44, 235–249.
6. Ma TY, Hollander D, Krugliak P, Katz K. PEG 400, a hydrophilic molecular probe for measuring intestinal permeability. Gastroenterology, 1990, 98, 39-46.
7. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S, Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract, European Journal of Pharmaceutical Sciences, 2006, 29, 240–250.
8. Shugarts S, Benet LZ, The role of transporters in the pharmacokinetics of orally administered drugs, Pharmaceutical Research, 2009, 26, 2039–2054
9. Di L, Kerns EH: Profiling drug-like properties in discovery research. Current Opinion Chemical Biology, 2003, 7(3), 402-408.
10. Swarbrick J Encyclopedia of Pharmaceutical Technology, Volume I, 3rd ed. USA, Informa Healthcare, 2007, p 208-227.
11. Gerakis AM, Koupparis MA, Efstathiou CE, Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs, Journal of Pharmaceutical and Biomedical Analysis, 1993, 11, 33-41.
12. Thomas V Hayden, Bhattachar Shobha, Hitchingham Linda, Zocharski Philip, Naath Maryanne, Surendran Narayanan, Stoner Chad L ,El-Kattan Ayman. The road map to oral bioavailability: an industrial perspective. Expert Opinion on Drug Metabalism. Toxicology, 2006 2(4), 591-608.
13. Jin S, Fu S, Han J, Lv Q, Lu Y, Qi J, Wu W, Yuan H,. Improvement of oral bioavailability of glycyrrhizin by sodium deoxycholate/phospholipid-mixed nanomicelles. Journal of Drug Targeting, 2012, 20(7), 615-622.
14. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advance Drug Delivery Review, 2001, 46(1-3), 3-26.
15. Avdeef A, Testa B. Physicochemical profiling in drug research: a brief survey of the state-of-the-art of experimental techniques. Cellular Molecular Life Science, 2002, 59(10), 1681-1689.
16. Johnson KC, Swindell AC. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharmaceutical Research,1996,13, 1795-1798.
17. Lachman L, Lieberman HA, Kanig JL, The theory and practice of industrial pharmacy 4th ed. Mumbai, Varghese publication house, 1991, p 171-196.
18. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Advanced Drug Delivery Reviews, 2004, 56, 335 – 347
19. Swarbrick J Encyclopedia of Pharmaceutical Technology, Volume I, 3rd ed. USA, Informa Healthcare, 2007, p 19-33.
20. Amidon GL, DeBrincat GA, Naji N, Effects of Gravity on Gastric Emptying, Intestinal Transit, and Drug Absorption. The Journal of Clinical Pharmacology, 1991, 31(10), 968–973.
21. Swarbrick J Encyclopedia of Pharmaceutical Technology, Volume I, 3rd ed. USA, Informa Healthcare, 2007, p 46-56.
22. Brahamankar BR, Jaiswal SJ. Biopharmaceutics and pharmacokinetics A Treatise. 2nd ed, Delhi, Vallabh Prakashan, 2011, p 5-97.
23. Kwan K.C. Oral Bioavailability and First-Pass Effects. Drug metabolism and disposition. 1997, 25(12), 1329-1336.
24. Varghese JM, Roberts JA, Wallis SC, Boots RJ, Healy H, Fassett RG, Lipman J, Ranganathan D, Pharmacokinetics of Intraperitoneal Gentamicin in Peritoneal Dialysis Patients with Peritonitis (GIPD Study). Clinical Journal of American Sociecty of Nephrology, 2012, 7(8), 1249-1256.
25. Bharat GK, Rajalakshmi R, Chimmiri R, solid lipid nanoparticles: for enhancement of oral bioavailability. International journal of Pharmaceutical development and technology, 2011, 1(2),38-46.
26. Aungst BJ. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. Journal of Pharmaceutical Sciences, 1993, 82, 979‐87.
27. Swarbrick J Encyclopedia of Pharmaceutical Technology, Volume V, 3rd ed. USA, Informa Healthcare 2007, p 3311-3333.
28. Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang H, Goldwasser J, Lee-Parsons CW, Benny-Ratsaby O, Yarmush ML, Nahmias Y, Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin.PLoS One. 2011, 6(4), e18033.
29. Orienti I, Bigucci F, Luppi B, Cerchiara T, Zuccari G, Giunchedi P, Zecchi V. Polyvinylalcohol substituted with triethyleneglycolmonoethylether as a new material for preparation of solid dispersions of hydrophobic drugs. Europen Journal of Pharmaceutics and Biopharmaceutics, 2002, 54, 229-233.
30. Lobenberg, R., Amidon, G.L., 2000. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Europen Journal of Pharmaceutics and Biopharmaceutics 50, 3-12.
31. Sarkari M, Brown J, Chen X, Swinnea S, Williams RO, 3rd Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. International Journal of Pharmaceutics, 2002, 243, 17-31.
32. Gibson M. Pharmaceutical preformulation and formulation—a practical guide from candidate drug selection to commercial dosage form, Florida, USA, CRC Press, SH Health Group, 2004, p 175-236
33. Kim ST, Kwon, JH, Lee JJ, Kim CW. Microcrystallization of indomethacin using a pH-shift method. International Journal of Pharmaceutics, 2003, 263, 141-150.
34. Chaumeil JC. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods and Finding in Expmental and Clinical Pharmacology, 1998, 20, 211-215.
35. Palmer KJ, Brogden RN. Gliclazide. An update of its pharmacological properties and therapeutic efficacy in non-insulin-dependent diabetes mellitus. Drugs, 1993, 46, 92-125.
36. Betageri GV, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion and lyophylization techniques. International Journal of Pharmaceutics, 1995, 126, 155–160.
37. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. Journal of Pharmecutical Science, 1971, 60, 1281-1302.
38. Karavas E, Ktistis G, Xenakis A, Georgarakis E. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Europen Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 103-114.
39. Sekiguchi K, Obi N, Ueda Y. Studies on Absorption of Eutectic Mixture. Ii. Absorption of Fused Conglomerates of Chloramphenicol and Urea in Rabbits. Chemical Pharmaceutics Bulletin (Tokyo) , 1964, 12, 134-144.
40. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, Lee HB, Cho SH. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. International Journal of Pharmaecutics, 2004, 274, 65-73.
41. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Europen Journal of Pharmaceutical Sciences , 2006, 29, 278-287.
42. Vasconcelos T, Costa P. Development of a rapid dissolving ibuprofen solid dispersion. In: PSWC– Pharmaceutical Sciences World Conference, DD-W-103, 2007.
43. Lloyd GR, Craig DQ, Smith A. A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions. Europen Journal of Pharmaceutics and Biopharmaceutics, 1999, 48, 59-65.
44. Pokharkar VB, Leenata P, Mandpe Mahesh N, Padamwar Anshuman A, Kakasaheb R, Anant P: Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technology, 2006, 167, 20-25.
45. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharmaceutcal Research, 1997, 14, 1691-1698.
46. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Europen Journal of Pharmaceutics and Biopharmaceutics, 2000, 50, 47-60.
47. Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech, 2009, 10, 1186-1192.
48. Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agriculture Food Chemistry, 2009, 57, 9141-9146.
49. Guan P, Lu Y, Qi J, Niu M, Lian R, Hu F, Wu W. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. International Journal of Nanomedicine, 2011, 6, 965-974.
50. Bangham AD, Liposomes, (Ed. I), Marcel Dekker, New York: 1983.p. 1-26.
51. Sun J, Deng, Y, Wang S, Cao J, Gao X, Dong X. Liposomes incorporating sodium deoxycholate for hexamethylmelamine (HMM) oral delivery: development, characterization, and in vivo evaluation. Drug Delivery, 2010, 17, 164-170.
52. Harwood, BG, Interfacial phenomena in Drug Delivery and Targeting, Academic Publishers. Switzerland, 1995.p. 154-155.
53. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of Pharmaceutical Science, 2010, 99, 2049-2060.
54. Florence AT. Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discovery Today: Technologies, 2005, 2, 75-81.
55. Agueros,M, Areses P, Campanero MA, Salman H, Quincoces G, Penuelas I, Irache JM. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles. Europen Journal of Pharmaceutical Science, 2009, 37, 231-240.
56. Arbos P, Campanero Arangoa MA, Irache JM. Nanoparticles with specific bioadhesive properties to circumvent the pre-systemic degradation of fluorinated pyrimidines. Journal of Control Release, 2004, 96, 55–65.
57. Kalaria DR., Sharma G, Beniwal V, Ravi Kumar MN. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharmaceutical Research, 2009, 26, 492-501.
58. Jain AK, Swarnakar NK, Chandraiah Godugu, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen Biomaterials, 2011, 32, 503-515.
59. Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. International Journal of Pharmaceutics, 2008, 347, 93-101.
60. Shen Q, Wang Y, Zhang Y. Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. International Journal of Nanomedicine, 2011, 6, 1237-1243.
61. Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Europen Journal of Pharmaceutics and Biopharmaceutics, 2000, 50, 179-188.
62. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedical Pharmacotherapeutics, 2004, 58, 173-182.
63. Newton M, Petersson J, Podczeck F, Clarke A, Booth S. The influence of formulation variables on the properties of pellets containing a self-emulsifying mixture. Journal of Pharmaceutical Sciences , 2001, 90, 987-995.
64. Tuleu C, Newton M, Rose J, Euler D, Saklatvala R, Clarke A, Booth S. Comparative bioavailability study in dogs of a self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone. Journal Pharmaceutics Sciences, 2004, 93, 1495-1502.
65. Newton JM, Bazzigialuppi M, Podczeck F, Booth S, Clarke A. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose. Europen Journal of Pharmaceutical Sciences, 2005, 26, 176-183.
66. Singh AK, Chaurasiya A, Awasthi A, Mishra G, Asati D, Khar RK, Mukherjee R. Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS). AAPS PharmSciTech, 2009, 10, 906-916.
67. Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech, 2009, 10, 183-192.
68. Dixit AR, Rajput SJ, Patel SG. Preparation and bioavailability assessment of SMEDDS containing valsartan. AAPS PharmSciTech, 2010, 11, 314-321.
69. Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. Journal of Control Release, 2005, 107, 215-228.
70. Luo, Y., Chen, D., Ren, L., Zhao, X., Qin, J., 2006. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J Control Release 114, 53-59.
71. Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. International Journal of Pharmaceutics, 2007, 335, 167-175.
72. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. Journal of Control Release, 2009, 133, 238-44.
73. Ke W, Zhao Y, Huang R, Jiang C, Pei Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. Journal of Pharmaceutical Sciences, 2008, 97, 2208-16.
74. Pickering LK, Hoecker JL, Kramer WG, Kohl S, Cleary TG. Clinical pharmacology of two chloramphenicol preparations in children: sodium succinate (iv) and palmitate (oral) esters. Journal of Pediatradics , 1980, 96, 757-761.
75. Friedman DI, Amidon GL. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharmaceutical Research, 1989, 6, 1043-1047.
76. Cheeseman KH, Holley AE, Kelly FJ, Wasil M, Hughes L, Burton, G. Biokinetics in humans of RRR-alpha-tocopherol: the free phenol, acetate ester, and succinate ester forms of vitamin E. Free Radical Biology and Medicine, 1995, 19, 591-598.
77. Ponchel G, Irache J. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Advanced Drug Delivery Reviews, 1998, 34, 191-219.
78. Liener IE, Sharon N, Goldstein IJ. The Lectins: Properties, Functions and Applications in Biology and Medicine, Florida, Orlando, Academic Press, 1986.
79. Lehr CM, Bouwstra JA, Kok W, Noach AB, de Boer AG, Junginger HE. Bioadhesion by means of specific binding of tomato lectin. Pharmaceutical Research, 1992, 9, 547-553.
80. Irache JM, Durrer C, Duchene D, Ponchel G. Bioadhesion of lectin-latex conjugates to rat intestinal mucosa. Pharmaceutical Research, 1996, 13, 1716-1719.
81. Ezpeleta I, Arangoa MA, Irache JM, Stainmesse S, Chabenat C, Popineau Y, Orecchioni AM. Preparation of Ulex europaeus lectin-gliadin nanoparticle conjugates and their interaction with gastrointestinal mucus. International Journal of Pharmaceutics, 1999, 191, 25-32.
82. Montisci MJ, Giovannuci G, Duchene D, Ponchel G. Covalent coupling of asparagus pea and tomato lectins to poly(lactide) microspheres. International Journal of Pharmaceutics, 2001, 215, 153-161.
83. Kim BY, Jeong JH, Park K, Kim JD. Bioadhesive interaction and hypoglycemic effect of insulin-loaded lectin-microparticle conjugates in oral insulin delivery system. Journal of Control Release, 2005, 102, 525-538.
84. Keegan ME, Royce SM, Fahmy T, Saltzman WM. In vitro evaluation of biodegradable microspheres with surface-bound ligands. Journal of Control Release, 2006, 110, 574-580.
85. Yin Y, Chen D, Qiao M, Wei X, Hu H. Lectin-conjugated PLGA nanoparticles loaded with thymopentin: ex vivo bioadhesion and in vivo biodistribution. Journal of Control Release , 2007,123, 27-38.
86. Lehr CM. Lectin-mediated drug delivery: the second generation of bioadhesives. Journal of Control Release, 2000, 65, 19-29.
87. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. Journal of Histochemical Cytochemistry, 1989, 37, 159-164.
88. Cordon-Cardo C, O'Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. Journal of Histochemical Cytochemical, 1990, 38, 1277-1287.
89. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. International Journal of Toxicology, 2006, 25, 231-259.
90. Raub TJ. P-glycoprotein recognition of substrates and circumvention through rational drug design. Molecular Pharmaceutics, 2006, 3, 3-25.
91. Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacological Review, 2008, 60, 196-209.
92. Kimura Y, Morita SY, Matsuo M, Ueda K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sciences , 2007, 98, 1303-1310.
93. Chinn LW, Kroetz DL. ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clinical Pharmacology Therapeutics, 2007, 81, 265-269.
94. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008, 38, 802-832.
95. Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Research, 1999, 59, 3944-3948.
96. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Europen Journal of Pharmecutical Sciences, 2000, 11, 265-283.
97. Huisman MT, Smit JW, Wiltshire HR, Beijnen JH, Schinkel AH. Assessing safety and efficacy of directed P-glycoprotein inhibition to improve the pharmacokinetic properties of saquinavir coadministered with ritonavir. Journal of Pharmacological Expert Therapeutics, 2003, 304, 596-602.
98. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control, 2003, 10, 159-165.
99. Seelig A, Gatlik-Landwojtowicz E. Inhibitors of multidrug efflux transporters: their membrane and protein interactions. Mini Review Medical Chemistry, 2005, 5, 135-151.
100. Modok S, Mellor HR, Callaghan R. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Current Opinion Pharmacology, 2006, 6, 350-354.
101. Regev R, Assaraf YG, Eytan GD. Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells. Europen Journal of Biochemical, 1999, 259, 18-24.
102. Sinicrope FA, Dudeja PK, Bissonnette BM, Safa AR, Brasitus TA. Modulation of P-glycoprotein-mediated drug transport by alterations in lipid fluidity of rat liver canalicular membrane vesicles. Journal of Biological Chemistry, 1992, 267, 24995-25002.
103. Woodcock DM, Linsenmeyer ME, Chojnowski G, Kriegler AB, Nink V, Webster LK, Sawyer WH. Reversal of multidrug resistance by surfactants. British Journal of Cancer, 1992, 66, 62-68.
104. Schuldes H, Dolderer JH, Zimmer G, Knobloch J, Bickeboller R, Jonas D, Woodcock BG. Reversal of multidrug resistance and increase in plasma membrane fluidity in CHO cells with R-verapamil and bile salts. Europen Journal Cancer, 2001, 37, 660-667.
105. Batrakova EV, Li S, Li Y, Alakhov VY, Kabanov AV. Effect of pluronic P85 on ATPase activity of drug efflux transporters. Pharmaceutical Research, 2004, 21, 2226-2233.
106. Erukova VY, Krylova OO, Antonenko YN, Melik-Nubarov NS. Effect of ethylene oxide and propylene oxide block copolymers on the permeability of bilayer lipid membranes to small solutes including doxorubicin. Biochimica et Biophys Acta, 2000, 1468, 73-86.
107. Krylova OO, Melik-Nubarov NS, Badun GA, Ksenofontov AL, Menger FM, Yaroslavov AA. Pluronic L61 accelerates flip-flop and transbilayer doxorubicin permeation. Chemistry, 2003, 9, 3930-3936.
108. Akhtar N, Talegaonkae S, Khar RK, Jaggi M, Self-Nanoemulsifying Lipid Carrier System for Enhancement of Oral Bioavailability of Etoposide by P-Glycoprotein Modulation: In Vitro Cell Line and In Vivo Pharmacokinetic Investigation, Journal of Biomedical Nanotechnology, 2013, 9, 1-14.
109. Negi LM, Tariq M, Talegaonkar S, Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation, Colloids and Surfaces B: Biointerfaces, 2013, 111, 346-353.
110. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A , 1997, 94, 2031-2035.
111. Malingre MM, Beijnen JH, Schellens JH. Oral delivery of taxanes. Investigational New Drugs, 2001a, 19, 155-162.
112. Agüeros M, Zabaleta V, Espuelas S, Campanero MA, Irache JM. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. Journal of Controlled Release, 2010, 145, 2–8.
113. Chen Z, Gu B, Enhanced oral bioavailability of Astragaloside IV in rats through complexation with 2-hydroxypropyl-beta-cyclodextrin, Asian Journal of Pharmaceutical Sciences, 2009, 4(1), 56-64.
114. Balducci AG, Magosso E, Colombo G, Sonvico F, Khan NA, Yuen KH, Bettini R, Colombo P, Rossi A. Agglomerated Oral Dosage Forms of Artemisinin/β-Cyclodextrin Spray-Dried Primary Microparticles Showing Increased Dissolution Rate and Bioavailability, AAPS PharmSciTech, 2013, DOI:10.1208/s22249-013-9982-9
115. Onoue S, Nakamura T, Uchida A, Ogawa K, Yuminoki K, Hashimoto N, Hiza A, Tsukaguchi Y, Asakawa T, Kan T,Yamada S. Physicochemical and biopharmaceutical characterization of amorphous soliddispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Europen Journal of Pharmaceutical Science, 2013, 49(4), 453-60.
116. Onoue S, Kojo Y, Suzuki H, Yuminoki K, Kou K, Kawabata Y, Yamauchi Y, Hashimoto N, Yamada S. Development of novel solid dispersion of tranilast using amphiphilic block copolymer for improved oral bioavailability. International Journal of Pharmaceutics, 2013, 452(1-2), 220-6..
117. Li W, Xing W, Niu X, Zhou P, Fan T.The pharmacokinetics of chelerythrine solution and chelerythrine liposomes after oral administration to rats. Planta Medica, 2013, 79(8), 654-60.
118. Hosny KM, Ahmed OA, Al-Abdali RT. Enteric-coated alendronate sodium nanoliposomes: a novel formula to overcome barriers for the treatment of osteoporosis. Expert Opinion Drug Delivery, 2013, 10(6), 741-6.
119. Sun Y, Zhao Y. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin. Journal of Nanoscience Nanotechnology, 2012, 12(10), 7677-84.
120. Sezgin -Bayindir Z, Onay-Besikci A, Vural N, Yuksel N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement:preparation, characterization, pharmacokinetics and biodistribution. Journal of Micro encapsulation, 2013.
121. Zhao X, Li W, Luo Q, Zhang X. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl- cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles. Europen Journal Drug Metabolism Pharmacokinetics, 2013.
122. Zou T, Gu L. TPGS emulsified zein nanoparticles enhanced oral bioavailability of daidzin: in vitro characteristics and in vivo performance. Molecular Pharmaceutics, 2013, 10(5), 2062-70.
123. Liu Y, Wang XQ, Ren WX, Chen YL, Yu Y, Zhang JK, Bawudong D, Gu JP, Xu XD, Zhang XN. Novel albendazole-chitosan nanoparticles for intestinal absorption enhancement and hepatic targeting improvement in rats. Journal of Biomedical Materials Research B Applied Biomaterial, 2013, 101(6), 998-1005.
124. Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development and evaluation of glyceryl behenate based solid lipid nanoparticles(SLNs) using hot self-nanoemulsification (SNE) technique. Archives of Pharmacal Research, 2013.
125. Jain A, Singh SK, Singh Y, Singh S. Development of lipid nanoparticles of diacerein, an antiosteoarthritic drug for enhancement in bioavailability and reduction in its side effects. Journal of Biomedical Nanotechnology, 2013, 9(5), 891-900.
126. Kamel AO, Mahmoud AA. Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system. Journal of Biomedical Nanotechnology, 2013, 9(1),26-39.
127. Chavhan SS, Petkar KC, Sawant KK. Simvastatin nanoemulsion for improved oral delivery: design, characterisation, in vitro and in vivo studies. Journal of Microencapsulation, 2013.
128. Patel Y, Poddar A, Sawant K. Formulation and characterization of Cefuroxime Axetil nanoemulsion for improved bioavailability. Journal of Pharmaceutical Bioallied Sciences, 2012, S4-5
129. Gu L, Wu ZH, Qi X, He H, Ma X, Chou X, Wen X, Zhang M, Jiao F. Polyamidomine dendrimers: an excellent drug carrier for improving the solubility and bioavailability of puerarin. Pharmaceutical Delivery Technology, 2013, 18(5), 1051-7.
130. Huang X, Wu Z, Gao W, Chen Q, Yu B. Polyamidoamine dendrimers as potential drug carriers for enhanced aqueous solubility and oral bioavailability of silybin. Drug Delivery Industrial Pharmacy, 2011, 37(4), 419-27.
131. Lu C, Jia Y, Yang J, Song Y, Liu W, Ding Y, Sun X, Wen A.Relative bioavailability study of a novel prodrug of tenofovir, tenofovir dipivoxil fumarate, in healthy male fasted volunteers Clinical Drug Investigational, 2012, 32(5), 333-8.
132. Zhang P, Guo J, Meng F, Sun L, Zhong B, Zhao Y. Determination of alamifovir disoproxil fumarate and its active metabolite 602076 in rat plasma by LC-MS/MS: application to a pharmacokinetic study Jornal of Pharmacy Biomedical Analysis. 2012 5(61),70-7.
133. Esmaeili Farnaz, Dinarvand Rassoul, Ghahremani Mohammad Hossein, Amini Mohsen, Rouhani Hasti, Sepehri Nima, Ostad Seyed Nasser, Atyabi Fatemeh. Docetaxel–Albumin Conjugates: Preparation, In Vitro Evaluation and Biodistribution Studies Journal of Pharmaceutical Sciences, 2009, 98, 2718–2730.
134. Mols R, Deferme S, Augustijns P.J. Sulfasalazine transport in in-vitro, ex-vivo and in-vivo absorption models: contribution of efflux carriers and their modulation by co-administration of synthetic nature-identical fruit extracts. Journal of Pharmacy Pharmacology. 2005, 57(12), 1565-73
135. Choi DH, Choi JS, Li C, Choi JS. Effects of simvastatin on the pharmacokinetics of diltiazem and its main metabolite, desacetyldiltiazem, after oral and intravenous administration in rats: possible role of P-glycoprotein and CYP3A4 inhibition by simvastatin. Pharmacological Reports. 2011, 63(6), 1574-82.
412 Views | 447 Downloads
How to Cite
Talegaonkar, S., A. Ahmad, M. Tariq, Z. Khan, L. Negi, A. Khan, and P. Negi. “EMERGING TRENDS IN ORAL BIOAVAILABILITY ENHANCEMENT”. International Journal of Drug Regulatory Affairs, Vol. 1, no. 2, Feb. 2018, pp. 20-38, doi:10.22270/ijdra.v1i2.108.