ORGANOGELS AS A POTENTIAL TOPICAL DRUG DELIVERY SYSTEM

  • Shubhendra Jha
  • Sheo Datta Maurya

Abstract

Semisolid preparations for external application to skin have gained much demand, since it is easily absorbed through the skin layers. Many novel topical dosage forms have been discovered, among which organogels appears to play an important role. Interest in organogels has increased in a wide variety of fields including chemistry, biotechnology and pharmaceutics. Organogels are thermodynamically stable, biocompatible, isotropic gel, which not only give localized effect, but also systemic effect through percutaneous absorption. Organogels are semi-solid systems, in which an organic liquid phase is immobilized by a three-dimensional network composed of self assembled, intertwined gelator fibers. The apolar phase gets immobilized within spaces of the three-dimensional networked structure formed due to the physical interactions amongst the self assembled structures of compounds regarded as gelators. Organogels have been explored as matrices for the delivery of bioactive agents. Compared to conventional topical dosage forms, these novel formulations are found to be more advantageous and efficient. In future, organogels can give way to many promising discoveries in the field of topical dosage forms. The current review aims at giving an idea about organogels, its applications and importance in topical delivery.

Keywords: Organogels, Organogelators, Gelation, Properties.

Downloads

Download data is not yet available.

References

1) Grigoriew H, Temeriusz A, Chmielewska D, Gronkowski J, Mirkowska MUSAXS study of influence of gelator polarity on Organogel structure, J Sol-Gel Sci Technol, 2007, 44:249–254.
2) Terech P, Weiss RG, Low molecular mass gelators of organic liquids and the properties of their gels, Chem. Rev. 1997, 97: 3133–3159.
3) Vintiloiu A, Leroux JC. Organogels and their use in drug delivery-A review, Journal of Controlled Release, 2008, 125:179–192.
4) Jibry N, Richard K, Heenan, Murdan S. Amphiphilogels for Drug Delivery: Formulation and Characterization Pharmaceutical Research, 2004, 21(10): 1852-61.
5) Abdallah DJ, Weiss RG. n-Alkanes gel n-alkanes (an many other organic liquids). Langmuir, 2000, 16: 352–355.
6) Wright A, Marangoni A. Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil Organogels, Journal of the American Oil Chemists' Society. 2006, 83(6): 497-503.
7) Sahoo S, Kumar N, Bhattacharya C, Sagiri SS, Jain K, Pal K, Ray SS, Nayak B. Organogels: Properties and Applications in drug delivery, Designed Monomers and Polymers.2011, 14: 95–108.
8) Kumar R, Kotare OP. Lecithin Organogel as a potential phospholipid-structured system for topical drug delivery: A Review, AAPS PharmSciTech.2005, 6: 298-310.
9) Patil KD, Bakliwal SR, Pawar SP. Organogel: topical and transdermal drug delivery system, International journal of pharmaceutical research and development.2011, 3(6): 58-66.
10) Kamble SR, Udapurkar P, Nakhat PD, Yeole PG, Biyani KR. Development and Evaluation of Sorbitan Monostearate Organogels as a Topical Delivery System for Aceclofenac, Ind j pharm edu res. 2011, 45(1): 65-70.
11) Toshiyuki S, Daisuke O, Kenji H. Viscoelastic Behavior of Organogels. Riron Oyo Rikigaku Koenkai Koen Ronbunshu, 2003, 52: 477-478.
12) Dasgupta D. Hybrid thermoreversible gels from covalent polymers and Organogels, Langmuir, 2009, 25(15):85-93.
13) Guenet JM, Microfibrillar Networks: Polymer Thermoreversible Gels vs Organogels, Macromolecular Symposia, 2006, 241(1): 45-50.
14) Chen Z, A Thermostable and Long-Term-Stable Ionic-Liquid-Based Gel Electrolyte for Efficient Dye-Sensitized Solar Cells, ChemPhysChem, 2007, 8(9):1293-1297.
15) Scartazzini R, Luisi PL, Organogels from lecithins, J Phys Chem, 1988; 92: 829-833.
16) Murdan S, Gregoriadis G, Florence AT, Novel sorbitan monostearate Organogels, Journal of Pharmaceutical Sciences, 1999, 88(6): 608-614.
17) Terech P, Weiss RG, Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels, Chemical Reviews, 1997, 97(8): 3133-3160.
18) Engelkamp H, Middelbeek S, Nolte RJM, Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity, Science, 1999, 284(5415): 785-788.
19) Motulsky A, Characterization and biocompatibility of Organogels based on lalanine for parenteral drug delivery implants, Biomaterials, 2005, 26(31): 6242-6253.
20) Shumilina EV, Khromova Y, Shchipunov YA, A study of the structure of lecithin organic gels by Fourier-transform IR spectroscopy, Zhurnal Fizicheskoi Khimii, 2000, 74:1210-1219.
21) Shchipunov YA, Lecithin Organogel: a micellar system with unique properties, Colloids Surf A Physicochemical and Engineering Aspects. 2001, 183-185:541-554.
22) Hanahan DJ, In: A Guide to Phospholipid Chemistry. New York, NY: Oxford University Press, 1997.
23) Wendel A, In: Kirk-Othmer Encyclopedia of Chemical Technology,New York, NY: John Wiley & Sons, 1995,192-193.
24) Schneider M, Industrial production of phospholipids-lecithin processing, Lipid Technology, 1997, 9:109-116.
25) Capitani D, Segre AL, Dreher F, Walde P, Luisi PL, Multinuclear NMR investigation of phosphatidylcholine Organogels, J Phys Chem, 1996,100:15211-15217.
26) Shchipunov YA, Lecithin Organogel: a micellar system with unique Properties, Colloids Surf A Physicochemical and Engineering Aspects, 2001, 183(185):541-554.
27) Shumilina EV, Khromova Y, Shchipunov YA, Lecithin Organogels: the effect of phosphatidylethanolamine additives, Colloid J, 1997, 59:514-518.
28) Murdan S, Gregoriadis G, Florence AT, Novel sorbitan monostearate Organogels. Journal of pharmaceutical sciences, 1999, 88(6): 608-614.
29) Murdan S, Gregoriadis G, Florence AT, Inverse toroidal vesicles: precursors of tubules in sorbitan monostearate Organogels, International Journal of Pharmaceutics, 1999, 183(1): 47–49.
30) Fernandeza P, Andr´eb A, Riegera J, Kuhnlea A, Nano-emulsion formation by emulsion phase inversion, Colloids and Surfaces A: Physicochem, Eng. Aspects, 2004; 251:53–58.
31) Dannielsson I, Lindman B, The definition of microemulsion; Colloids and Surfaces 1998, 1(3):391-392.
32) El-laithy HM, El-shoboury KMF, The developmental cutina lipogel and gel microemulsion for topical administration of fluconazole, AAPS. Pharm. Sci. Tech, 2002, 3:35, 1-9.
33) Nandi I, Barri M, Joshi H, Study of IPM microemulsion system containing cyclodextrin to improve the solubility of 2 model hydrophobic drug, AAPS Pharm. Sci. Tech,2003, 4: 10, 1-9.
34) Shafiq S, Faiyaz S, Sushma T, Ahmad FJ, Khar RK, Ali M, Design and development of oral oil in water ramipril nanoemulsion formulation: in vitro and in vivo evaluation, J Biomed Nanotech. 2007, 3: 28-44.
35) Penzes T, Csoka I, Eros I, Rheological analysis of the structural properties effecting the percutanneous absorption and stability in pharmaceutical Organogels, Rheol Acta, 2004, 43: 457–463.
36) Penzes T, Blazso G, Aigner Z, Topical absorption of piroxicam from Organogels — in vitro and in vivo correlations, Int. J. Pharm, 2005, 298:47–54.
37) Kang L, Liu XY, Sawant PD, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 2005, 106: 88–98.
38) Lim PF, Liu XY, Kang L, Limonene GP1/PG Organogel as a vehicle in transdermal delivery of haloperidol, Int. J. Pharm, 2006, 311: 157–164.
39) Robinson RC, Plastibase, a hydrocarbon gel ointment base, Bull. Sch. Med. Univ. Md, 1955, 40: 86–89.
40) Najjar TA, Sleeper HR, Calabresi P, The use of 5-iodo-2'-deoxyuridine (IUDR) in Orabase and plastibase for treatment of oral herpes simplex, J. Oral Med.1969, 24: 53–57.
41) Mukhopadhyay S, Maitra U, A notable group of low molecular mass natural products that form gel are some of the bile acids, Curr. Sci, 2004; 87: 1666.
42) Lipowitz AV, Gelation of an aqueous solution of lithium urate Chem. Pharm, 1841, 38: 348.
43) Goto S, Kawata M, Suzuki T, Kim NS, Ito C, Preparation and evaluation of Eudragit gels. I. Eudragit Organogels containing drugs as rectal sustained-release preparations, J. Pharm. Sci, 1991, 80(10):958-961.
44) Kawata M, Suzuki T, Kim NS, Ito T, Kurita A, Miyagoe Y, Goto S, Preparation and evaluation of Eudragit gels: II: in vitro release of salicylic acid, sodium salicylate, and ketoprofen from Eudragit L and S Organogels. J. Pharm. Sci.1991, 80(11):1072-1074.
45) Goto S, Kawata M, Suzuki T, Kim NS, Ito C, Preparation and evaluation of Eudragit gels. I. Eudragit Organogels containing drugs as rectal sustained-release preparations, J. Pharm. Sci, 1991, 80(10):958-961.
46) Murdan S, Organogels in drug delivery, Expert Opin, Drug Deliv, 2005, 2(3).
47) Couffin-hoarau AC, Motulsky A, Delmas P, Leroux JC: In situ forming pharmaceutical Organogels based on the self-assembly of L-alanine derivatives, Pharm. Res, 2004, 21(3):454-457.
48) Murdan S, Organogels in drug delivery, Expert Opin, Drug Deliv, 2005, 2(3).
49) The history of Pluronic Lecithin Orgaogel: an interview with Marty Jones, Int. J.Pharm. Compounding, 2003, 7(3):180-183.
50) http://www.ijpc.com/editorial/Search By Keyword.cfm Internatinal Journal of Pharmaceutical Compounding website.
51) Schaller JL, Briggs B, Briggs M: Progesterone Organogel for premenstrual dysphoric disorder, J. Am. Acad. Child Adolesc. Psychiatry, 2000, 39(5):546.
52) Shippen E: Letter to the editor re: progesterone Organogel for premenstrual dysphoric disorder, J. Am. Acad. Child Adolesc. Psychiatry, 2001, 40(3):262.
53) Charoenbanpachon S, Krasieva T, Ebihara A, Osann K, Wilder SP, Acceleration of ALA induced Pp IX fluorescence development in the oral mucosa. Lasers Surg. Med, 2003, 32:185-188.
54) Marek CL: Issues and opportunities: compounding for dentistry, Int. J. Pharm. Compounding 1999, 3:4-7.
55) Padilla M, Clark GT, Merrill RL: Topical medications for orofacial neuropathic pain: a review, J. Am. Dent. Assoc, 2000, 131:184-195.
56) Grace D, Rogers J, Skeith K, Topical diclofenac versus placebo: a double blind, randomized clinical trial in patients with osteoarthritis of the knee, J. Rheumatol, 1999, 26: 2659–2663.
57) Mahler P, Mahler F, Duruz H, Double-blind, randomized, controlled study on the efficacy and safety of a novel diclofenac epolamine gel formulated with lecithin for the treatment of sprains, strains and contusions, Drugs Exp. Clin. Res, 2003, 29: 45–52.
58) Agrawal GP, Juneja M, Agrawal S, Preparation and characterization of reverse micelle based Organogels of piroxicam, Pharmazie, 2004, 59: 191–193.
59) Nastruzzi C, Gambari R, Antitumor activity of (trans) dermally delivered aromatic tetra-amidines, J. Control. Release, 1994, 29: 53–62.
60) Willimann H, Walde P, Luisi PL, Lecithin Organogel as matrix for transdermal transport of drugs, J. Pharm. Sci, 1992, 81: 871–874.
61) Bhatnagar S, Vyas SP, Organogel-based system for transdermal delivery of propranolol, J. Microencapsul 1994, 67: 431–438.
62) Aboofazeli R, Zia H, Needham TE, Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement, Drug Deliv. 2002, 9: 239–247.
63) Shaikh IM, Jadhav KR, Gide PS, Topical delivery of aceclofenac from lecithin Organogels: preformulation study, Curr. Drug Deliv, 2006, 3: 417–427.
64) Dreher F, Walde P, Walter P, Interaction of a lecithin microemulasion gel with human stratum corneum and its effect on transdermal transport, J. Control. Release, 1997, 45: 131–140.
65) Gao ZH, Crowley WR, Shukla AJ, Controlled release of contraceptive steroids from biodegradable and injectable gel formulations— in vivo evaluation, Pharm. Res, 1995, 12: 864–868.
66) Kang L, Liu XY, Sawant PD, SMGA gels for the skin permeation of haloperidol, J. Control. Release, 2005, 106: 88–98.
67) Lim PF, Liu XY, Kang L, Limonene GP1/PG Organogel as a vehicle in transdermal delivery of haloperidol, Int. J. Pharm, 2006, 311: 157–164.
68) Robinson RC, Plastibase, a hydrocarbon gel ointment base, Bull. Sch. Med. Univ. Md, 1955, 40: 86–89.
69) Pisal S, Shelke V, Mahadik K, Effect of Organogel components on in vitro nasal delivery of propranolol hydrochloride, AAPS PharmSciTech, 2004, 5: 63.
70) Murdan S, Andrysek T, Son D, Novel gels and their dispersions — oral drug delivery systems for ciclosporin, Int. J. Pharm, 2005, 300: 113–124.
71) Murdan S, Gregoriadis G, Florence AT, Non-ionic surfactant based Organogels incorporating niosomes, S.T.P. Pharm. Sci, 1996, 6: 44–48.
72) Murdan S, Bergh VBD, Gregoriadis G, Water-in-sorbitan monostearate Organogels (water-in-oil gels), J. Pharm. Sci. 1999, 88: 615–619.
73) Vintiloiu A, Lafleur M, Bastiat G, In situ-forming oleogel implant for sustained release of rivastigmine, Pharm. Res, (in press), 2008.
74) Plourde F, Motulsky A, Couffin-Hoarau AC, First report on the efficacy of L-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs, J. Control. Release, 2005, 108: 433–441.
75) Murdan S, Gregoriadis G, Florence AT, Sorbitan monostearate/polysorbate 20 Organogels containing niosomes: a delivery vehicle for antigens? Eur. J. Pharm. Sci, 1999, 8: 177–186.
76) Aulton ME; The science of dosage form design, 2nd Edition, Churchilli Livingstone New York, 2002; 89.
77) Allen LV, Popovich J, Nicholas G, Ansel HC, pharmaceutical Dosage form and drug delivery system, 7th edition, wiliams and Wilkins, New York, 375.
78) Suzuki M, L-lysine based gemini Organogelators: their Organogelation properties and thermally stable Organogels. Org Biomol Chem., 2003, 1(22): 4124-31.
79) Raut SY, Suruse PB, Shivhare UD, Bhusari KP, Development and evaluation of non-ionic surfactant based Organogels for transdermal delivery of zidovudine Pharmacie Globale (IJCP) 2010, 1(3):1-7.
Statistics
305 Views | 352 Downloads
How to Cite
Jha, S., and S. D. Maurya. “ORGANOGELS AS A POTENTIAL TOPICAL DRUG DELIVERY SYSTEM”. International Journal of Drug Regulatory Affairs, Vol. 1, no. 2, Feb. 2018, pp. 49-58, doi:10.22270/ijdra.v1i2.110.